Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 595(4): 532-547, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33314143

RESUMO

Integrin-mediated adhesion regulates cellular responses to changes in the mechanical and biochemical properties of the extracellular matrix. Cell-matrix adhesion regulates caveolar endocytosis, dependent on caveolin 1 (Cav1) Tyr14 phosphorylation (pY14Cav1), to control anchorage-dependent signaling. We find that cell-matrix adhesion regulates pY14Cav1 levels in mouse fibroblasts. Biochemical fractionation reveals endogenous pY14Cav1 to be present in caveolae and focal adhesions (FA). Adhesion does not affect caveolar pY14Cav1, supporting its regulation at FA, in which PF-228-mediated inhibition of focal adhesion kinase (FAK) disrupts. Cell adhesion on 2D polyacrylamide matrices of increasing stiffness stimulates Cav1 phosphorylation, which is comparable to the phosphorylation of FAK. Inhibition of FAK across varying stiffnesses shows it regulates pY14Cav1 more prominently at higher stiffness. Taken together, these studies reveal the presence of FAK-pY14Cav1 crosstalk at FA, which is regulated by cell-matrix adhesion.


Assuntos
Caveolina 1/genética , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Quinase 1 de Adesão Focal/genética , Processamento de Proteína Pós-Traducional , Tirosina/metabolismo , Animais , Cavéolas/efeitos dos fármacos , Cavéolas/metabolismo , Cavéolas/ultraestrutura , Caveolina 1/deficiência , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Embrião de Mamíferos , Endocitose/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/ultraestrutura , Fibroblastos/efeitos dos fármacos , Fibroblastos/ultraestrutura , Quinase 1 de Adesão Focal/metabolismo , Adesões Focais/efeitos dos fármacos , Adesões Focais/metabolismo , Adesões Focais/ultraestrutura , Mecanotransdução Celular , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Quinolonas/farmacologia , Sulfonas/farmacologia
2.
J Membr Biol ; 253(6): 509-534, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33089394

RESUMO

The plasma membrane is a dynamic lipid bilayer that engages with the extracellular microenvironment and intracellular cytoskeleton. Caveolae are distinct plasma membrane invaginations lined by integral membrane proteins Caveolin1, 2, and 3. Caveolae formation and stability is further supported by additional proteins including Cavin1, EHD2, Pacsin2 and ROR1. The lipid composition of caveolar membranes, rich in cholesterol and phosphatidylserine, actively contributes to caveolae formation and function. Post-translational modifications of Cav1, including its phosphorylation of the tyrosine-14 residue (pY14Cav1) are vital to its function in and out of caveolae. Cells that experience significant mechanical stress are seen to have abundant caveolae. They play a vital role in regulating cellular signaling and endocytosis, which could further affect the abundance and distribution of caveolae at the PM, contributing to sensing and/or buffering mechanical stress. Changes in membrane tension in cells responding to multiple mechanical stimuli affects the organization and function of caveolae. These mechanical cues regulate pY14Cav1 levels and function in caveolae and focal adhesions. This review, along with looking at the mechanosensitive nature of caveolae, focuses on the role of pY14Cav1 in regulating cellular mechanotransduction.


Assuntos
Caveolina 1/metabolismo , Mecanotransdução Celular , Tirosina/metabolismo , Animais , Caveolina 1/química , Membrana Celular/metabolismo , Sinais (Psicologia) , Endocitose , Adesões Focais , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Fosforilação , Transdução de Sinais
3.
Cell Signal ; 28(9): 1225-1236, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27269287

RESUMO

Integrin dependent regulation of growth factor signalling confers anchorage dependence that is deregulated in cancers. Downstream of integrins and oncogenic Ras the small GTPase Ral is a vital mediator of adhesion dependent trafficking and signalling. This study identifies a novel regulatory crosstalk between Ral and Arf6 that controls Ral function in cells. In re-adherent mouse fibroblasts (MEFs) integrin dependent activation of RalA drives Arf6 activation. Independent of adhesion constitutively active RalA and RalB could both however activate Arf6. This is further conserved in oncogenic H-Ras containing bladder cancer T24 cells, which express anchorage independent active Ral that supports Arf6 activation. Arf6 mediates active Ral-exocyst dependent delivery of raft microdomains to the plasma membrane that supports anchorage independent growth signalling. Accordingly in T24 cells the RalB-Arf6 crosstalk is seen to preferentially regulate anchorage independent Erk signalling. Active Ral we further find uses a Ral-RalBP1-ARNO-Arf6 pathway to mediate Arf6 activation. This study hence identifies Arf6, through this regulatory crosstalk, to be a key downstream mediator of Ral isoform function along adhesion dependent pathways in normal and cancer cells.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Transdução de Sinais , Proteínas ral de Ligação ao GTP/metabolismo , Fator 6 de Ribosilação do ADP , Animais , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Embrião de Mamíferos/citologia , Exocitose , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Microdomínios da Membrana/metabolismo , Camundongos , Transporte Proteico
4.
Cell Signal ; 28(8): 1124-36, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27140681

RESUMO

Inositol hexakisphosphate kinases (IP6Ks), a family of enzymes found in all eukaryotes, are responsible for the synthesis of 5-diphosphoinositol pentakisphosphate (5-IP7) from inositol hexakisphosphate (IP6). Three isoforms of IP6Ks are found in mammals, and gene deletions of each isoform lead to diverse, non-overlapping phenotypes in mice. Previous studies show a facilitatory role for IP6K2 in cell migration and invasion, properties that are essential for the early stages of tumorigenesis. However, IP6K2 also has an essential role in cancer cell apoptosis, and mice lacking this protein are more susceptible to the development of aerodigestive tract carcinoma upon treatment with the oral carcinogen 4-nitroquinoline-1-oxide (4NQO). Not much is known about the functions of the equally abundant and ubiquitously expressed IP6K1 isoform in cell migration, invasion and cancer progression. We conducted a gene expression analysis on mouse embryonic fibroblasts (MEFs) lacking IP6K1, revealing a role for this protein in cell receptor-extracellular matrix interactions that regulate actin cytoskeleton dynamics. Consequently, cells lacking IP6K1 manifest defects in adhesion-dependent signaling, evident by lower FAK and Paxillin activation, leading to reduced cell spreading and migration. Expression of active, but not inactive IP6K1 reverses migration defects in IP6K1 knockout MEFs, suggesting that 5-IP7 synthesis by IP6K1 promotes cell locomotion. Actin cytoskeleton remodeling and cell migration support the ability of cancer cells to achieve their complete oncogenic potential. Cancer cells with lower IP6K1 levels display reduced migration, invasion, and anchorage-independent growth. When fed an oral carcinogen, mice lacking IP6K1 show reduced progression from epithelial dysplasia to invasive carcinoma. Thus, our data reveal that like IP6K2, IP6K1 is also involved in early cytoskeleton remodeling events during cancer progression. However, unlike IP6K2, IP6K1 is essential for 4NQO-induced invasive carcinoma. Our study therefore uncovers similarities and differences in the roles of IP6K1 and IP6K2 in cancer progression, and we propose that an isoform-specific IP6K1 inhibitor may provide a novel route to suppress carcinogenesis.


Assuntos
Movimento Celular , Deleção de Genes , Neoplasias de Cabeça e Pescoço/enzimologia , Neoplasias de Cabeça e Pescoço/patologia , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , 4-Nitroquinolina-1-Óxido , Animais , Adesão Celular , Movimento Celular/genética , Espaço Extracelular/metabolismo , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Células HCT116 , Células HEK293 , Células HeLa , Neoplasias de Cabeça e Pescoço/genética , Humanos , Fosfatos de Inositol/farmacologia , Camundongos Knockout , Invasividade Neoplásica , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Quinolonas , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...